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» Need a new dynamical hyperparameter selection

m Et h O d . \Sub -Anomaly Map (SAM) Aggregation //'

o Getrid of pixel-level labels > No iterative reconstruction » Segmentation threshold 0"
o Select hyperparameters individually

» Only the forward process o Determined by anomaly size

o Healthy guided o Roughly linear related with M, _
o Unguided

' ' _ > Optimal fixed guidance strength w*
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» Novel dynamical threshold and noise scale selection
and novel fixed guidance strength selection for
diffusion models on weakly-supervised anomaly
detection

The divergence M,
IS essentially the magnitude of
weighted gradient of the log-likelihood
of the implicit classifier
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St extra error term As;. It achieves better

results compared to use the difference
between two forward processes.
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» Novel aggregation strategy combined with
dynamical noise scale selection to enhance the
signal strength of anomalous regions on anomaly
map

How SAMSs change?

» Focus: high-frequency to low-frequency components

» The signals from healthy regions appear randomly distributed.

» The signals from anomalous regions exhibit more consistency.

» This consistency is crucial to the effectiveness of the aggregation process.

Qualitative results on (top) ATLAS v2.0 dataset
and (bottom) BraTS21 dataset
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