Yiming Che

+1(607)338-8871 | yche1@binghamton.edu | Homepage | Google Scholar | GitHub

PROFESSIONAL SKILLS & KNOWLEDGE

- Programming Languages: Python, Matlab, R
- ML Frameworks: PyTorch, TensorFlow, scikit-learn, HuggingFace, LangChain
- Data Pipeline: SQL, Pandas, PySpark, Snowflake, Databricks
- Cloud/DevOps: AWS(S3, EC2), SageMaker, Docker, CI/CD, MLflow/Wandb, Flask
- Tools: Linux (Slurm), Git/GitHub, Bash

EDUCATION BACKGROUND

• Binghamton University, State University of New York, NY, United States	
Doctor of Philosophy in Systems Science (focus on Machine Learning)	May 2023
• Binghamton University, State University of New York, NY, United States	
Master of Science in Industrial Engineering	May 2018
• Capital University of Economics and Business, Beijing, China	
Bachelor of Science in Industrial Engineering	July 2017

PROFESSIONAL EXPERIENCE

- Postdoctoral Scholar at Arizona State University
 Research (Data) Scientist at ASU-Mayo Center for Innovative Imaging (Concurrent)
 July 2023 Present, Tempe, AZ
 - Led Development of End-to-End Cycle-GAN for Tracer Data Translation (In Progress)
 - Optimized Cycle-GAN model for translation between FBP and PiB tracer (tabular data) in amyloid PET images. Eliminated the requirement of paired data without loss of accuracy (achieved correlation 0.97). Reduced clinical trial costs and expand access to amyloid imaging in non-specialist settings. [Project Link] (Paper in preparation)
 - Utilized Airbyte for data extraction from AWS S3 to Snowflake for data ELT, and performed data EDA using Pandas.
 - Implemented modified Cycle-GAN model using **PyTorch** and deployed the **dockerized** model using **AWS SageMaker** and **Flask** for inference. Utilized GitHub Action for **CI/CD**.
 - Collaborated with clinicians from Banner Alzheimer's Institute to validate model outputs.
 - Led Development of End-to-End Multi-agent Medical Q&A System (In Progress)
 - Implemented medical Q&A system with multi-agent retrieval-augmented generation (RAG) using **Hugging-Face** and **PyTorch** to build fully customized clinical support tools. [Project Link]
 - Vectorized medical datasets for corpus using FAISS.
 - Fine-tuned LLMs with 7B parameter with LoRa utilizing distributed training.
 - Deployed the inference pipeline using AWS SageMaker and Flask for real-time inference.
 - Optimizing the RAG with ReAct using LangChain and OpenAI API to enhance the performance.
 - Led Development of Diffusion Models on Medical Imaging
 - Developed a fully weakly-supervised anomaly detection/segmentation framework (AnoFPDM) using guided diffusion models. Achieved state-of-the-art performance on lesion segmentation with DICE score 77.4 on BraTS21 dataset, eliminating pixel-level labels for hyperparameter tuning, which significantly reduces the annotation cost.
 - Implemented various diffusion models in **PyTorch** using **distributed training/inference** on Linux (Slurm job scheduler).
 - Led Development of Fusion of CT and MRI for Traumatic Brain Injury Recovery Prediction
 - Utilized Cycle-GAN to generate synthetic MRI from real CT to address long waiting time of MRI. Developed a multi-modal classification pipeline combining CT and synthetic MRI using ResNet. **Achieved** ~16% AUC improvement compared to only using single CT modality.
 - Collaborated with clinicians at Mayo Clinic to validate model outputs, ensuring the solution addressed real patient-care needs. (Paper under review)
 - Co-led Development of Machine Learning for Cognitive Decline Prediction
 - Conducted model selection from classification models, e.g., XGBoost, random forest and SVM, with nested cross-validation for robust cognitive decline prediction.

- Applied **SHAP** analysis and **A/B** test (Wald test) for feature importance in cognitive decline prediction. **Identified top 5 features**, providing insights to the clinical research. (paper)
- Collaborated cross-functionally with clinicians and data engineers from Mayo Clinic to preprocess patient cognitive assessments.

• Co-led Development of Multi-modality (Text and Image) Models for Headache Diagnosis

- Fine-tuned multi-modal classification pipelines combining MRI and clinical notes based on BioMedCLIP using PyTorch. Fine-tuned solely on PubMedBERT and ViT for co-learning. Achieved state-of-the-art performance in headache diagnosis with 0.96 AUC. Reduced misdiagnosis rates, potentially saving hospitals and insurance companies on unnecessary treatments. (Paper under review)
- Collaborated cross-functionally with clinicians from Mayo Clinic for biomarker extraction and clinical interpretation.

• Research Assistant (PhD) at Binghamton University

Aug. 2017 - May 2023, Binghamton, NY

• Researched Bayesian Statistics and Uncertainty Quantification

- Integrated a Bayesian framework into traditional PINN for enhanced robustness and uncertainty quantification. Provided confidence intervals for predictions and improved reliability over non-Bayesian PINNs for more trustworthy decision-making process.
- Developed a novel Bayesian surrogate model which combines generalized polynomial chaos and Gaussian process for efficient surrogate modeling of stochastic systems. Achieved $\sim 90\%$ improvement in computational budget without loss of accuracy compared to traditional Monte Carlo simulation.
- Developed single-section and batch-selection sampling algorithms with Gaussian process. Achieved $\sim 70\%$ improvement in computational efficiency compared to traditional one-shot design.
- Developed uncertainty quantification framework using generalized polynomial chaos expansion for machining process. Achieved ~80% improvement in computational efficiency compared to Monte Carlo simulation.

SELECTED AWARD & HONOR

• Distinguished Dissertation Award, Binghamton University (top 1%)	2024
• Excellence in Systems Science Research Award, Binghamton University	2023
• Binghamton University Graduate Student Excellence Award in Research (top 1%)	2021

SELECTED PUBLICATIONS

Summary: 14 publications, including 8 first-author papers (13 journal articles, 1 conference paper, 3 working papers).

- 1. Che, Y., Rafsani, F., Shah, J., Siddiquee, M. M. R. and Wu, T. "AnoFPDM: Anomaly segmentation with forward process of diffusion models for brain MRI" *Proceedings of the Winter Conference on Applications of Computer Vision.* 2025. https://arxiv.org/abs/2404.15683
- 2. Wan, J., Kataoka, J., Sivakumar, J., Pena, E., Che, Y., Sayama, H. and Cheng, C. "Sparse Bayesian learning for sequential inference of network connectivity from Small Data" *IEEE Transactions on Network Science and Engineering* 11.6 (2024): 5892-5902. https://doi.org/10.1109/TNSE.2024.3471852
- 3. Che, Y., Guo, Z. and Cheng, C. "Generalized polynomial chaos-informed efficient stochastic Kriging," Journal of Computational Physics 445 (2021): 110598. https://doi.org/10.1016/j.jcp.2021.110598
- 4. Che, Y. and Cheng, C. "Uncertainty quantification in stability analysis of chaotic systems with discrete delays," *Chaos, Solitons & Fractals* 116 (2018): 208-214. https://doi.org/10.1016/j.chaos.2018.08.024